Biomass Chronosequences of United States Forests: Implications for Carbon Storage and Forest Management
نویسندگان
چکیده
Forests account for a large fraction of the carbon stored in global soils and vegetation (Dixon et al. 1994). Accordingly, considerable effort has been devoted to understanding the impact of land use and forest management on carbon sequestration, and thus on climate change (Harmon et al. 1990; Lugo and Brown 1992; Heath and Birdsey 1993; Dixon et al. 1994; Houghton et al. 1999; Caspersen et al. 2000; Fang et al. 2001; Pacala et al. 2001; Birdsey et al. 2006). The optimal strategy for forest management aimed at carbon sequestration is controversial. On the one hand, logging diminishes the pool of standing carbon and can result in a large net transfer of carbon to the atmosphere (Harmon et al. 1990; Vitousek 1991; Schulze et al. 2000; Harmon 2001; Harmon and Marks 2002). On the other hand, if the harvested wood has a sufficiently long residence time or is used to offset fossil fuel emissions, repeated harvest and regrowth can effectively sequester carbon (Vitousek 1991; Marland and Marland 1992; Marland and Schlamadinger 1997). For a given parcel of land, the relative merits of plantation forestry vs old-growth protection or restoration depends, in part, on the late-successional carbon storage trajectory. Classical models of ecosystem development propose that live biomass density (biomass per unit area) increases over time to an asymptote (Kira and Shidei 1967; Odum 1969). In contrast, reviews of biomass dynamics in the forest ecology literature tend to emphasize the variety of patterns that can ensue over the course of succession (Peet 1981, 1992; Shugart 1984). In the context of forest management aimed at carbon sequestration, of particular interest is the possibility that live biomass density may decline late in succession in some ecosystems (Loucks 1970; Bormann and Likens 1979). For example, data in Canada’s National Forest Biomass Inventory indicate that biomass declines are common in some types of ‘overmature’ stands, and these declines are accounted for in the Carbon Budget Model of the Canadian Forest Sector (Kurz and Apps 1999). The expected trajectory of live biomass density over time does not in itself determine the optimal strategy for carbon sequestration. Additional factors that must be considered include (1) the impacts of management on other forest carbon
منابع مشابه
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist ...
متن کاملEconomic Evaluation of Carbon Sequestration in Zagros Oak Forests (Case Study: The Pahnus Forest habitat, Chaharmahal and Bakhtiari Province)
Examining the economic value of carbon sequestration in forests is essential, given the risk of global climate change, which has posed a profound challenge to societies internationally. The present study investigates the amount of carbon sequestration and its economic value in the oak forests (Quercus brantii L.) of Pahnus forest habitat with an area of 990 ha, located in Chaharmahal va Bakhtia...
متن کاملForest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products
Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting f...
متن کاملEstimation of biomass, carbon stocks and soil sequestration of Gowatr mangrove forests, Gulf of Oman
The mangrove forest ecosystem is known to possess a variety of ecosystem services, including high rates of carbon sequestration, storage and mitigating climate change through reduced deforestation. This study was carried out in the mangrove forests of Gowatr Bay, Gulf of Oman during 2017-18 to quantify biomass and carbon stocks of all components of this forest, including live and dead trees, so...
متن کاملIntegrating management for old-growth characteristics with enhanced carbon storage of northern hardwood-conifer forests
Forest management practices emphasizing stand structural complexity are of interest across the northern forest region of the United States because of their potential to enhance carbon storage. Our research is nested within a long-term study evaluating how silvicultural treatments promoting late-successional forest characteristics affect aboveground biomass development in northern hardwood fores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009